If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+0.5X^2=16
We move all terms to the left:
X^2+0.5X^2-(16)=0
We add all the numbers together, and all the variables
1.5X^2-16=0
a = 1.5; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1.5·(-16)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1.5}=\frac{0-4\sqrt{6}}{3} =-\frac{4\sqrt{6}}{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1.5}=\frac{0+4\sqrt{6}}{3} =\frac{4\sqrt{6}}{3} $
| 2(d-13)+15=-7 | | 9x-9=6x-9-3x | | (2x+5)+(9x-7)=86 | | 14x+-13+8×+5=180 | | 3x+0.3=6.3 | | 20×30=y | | 4(x+3)=4+2(2x+4) | | -15(8x+1)=-59 | | 3x-2)=(2x+30) | | 1/4(12-8x)=6x | | 2j−5=11 | | -24=1-5x-5 | | -10+8c=6c+10 | | 5(x-2)+5x=3(x-15) | | –10+8c=–2c+6c+10 | | 2/3(x-9(=1/3+19 | | 32-7h=-6(h+3) | | 1x+1=-2x+10 | | 2y+14-9=-3 | | -4+x/3=-10 | | x−3−2x=x+13 | | 5w+2/3=-4 | | 2(c-9)-1=1 | | -120=-6(-6p-4 | | -1/8a=1/2 | | 5s-1=8s-7 | | 90+90+5x=x+132 | | 2y+7-9=-3 | | 1/4y-2=-13 | | 3x+7=1/3(9x+7) | | -3(d+-3)=6 | | 5-(4m-10)=-1 |